Cambridge International AS \& A Level

PHYSICS

9702/53
Paper 5 Planning, Analysis and Evaluation
October/November 2020
MARK SCHEME
Maximum Mark: 30
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).
GENERIC MARKING PRINCIPLE 3:
Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.

2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.
3 Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).

4 The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 'List rule' guidance
For questions that require \boldsymbol{n} responses (e.g. State two reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked ignore in the mark scheme should not count towards \boldsymbol{n}.
- Incorrect responses should not be awarded credit but will still count towards \boldsymbol{n}.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should not be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response.
- Non-contradictory responses after the first \boldsymbol{n} responses may be ignored even if they include incorrect science.

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, unless the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^{n}$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations
Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.
State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

Annotations

\checkmark	Correct point Method of analysis marks in Question 1
\checkmark_{1-10}	Additional detail marks in Question 1
\mathbf{X}	Incorrect point
$\boldsymbol{\wedge}$	Omission
BOD	Benefit of the doubt
NBOD	No benefit of the doubt given
ECF	Error carried forward
P	Defining the problem marks in Question 1 Power of ten error in Question 2
M0	Methods of data collection marks in Question 1

Question	Answer	Marks
1	Defining the problem	
	A is the independent variable and x is the dependent variable or vary A and measure x	1
	keep m constant	1
	Methods of data collection	
	labelled diagram of workable experiment including: - spring fixed at one end (to a support) - load attached to the other end - labelled load/mass	1
	clamped labelled ruler perpendicular by eye and ruler positioned close to the spring	1
	method to determine x : record initial position, record final position and subtraction or record length of stretched spring, original length of spring and subtraction	1
	use of a micrometer/calipers to determine diameter d of wire	1
	Method of Analysis	
	plots a graph of $\lg x$ against $\lg A$ or equivalent	1
	$n=$ gradient and relationship valid if a straight line	1
	$\gamma=\frac{m g w^{3} N}{\rho \times 10^{y-\text { intercept }}}$	1

Question	Answer	Marks
1	Additional detail including safety considerations	6
	D1 use safety goggles/safety screen to prevent injury to eyes from (moving) spring/load or use cushion/sand box in case load falls	
	D2 keep constant all of: - w - N - ρ (or use same material for wire)	
	D3 measure mass of load $/ m$ with a balance or use newton meter to measure weight of load	
	D4 use ruler/calipers to measure the width of the spring/w	
	D5 use the equation $\rho=$ mass of metal / volume to calculate ρ	
	D6 method to measure w, e.g. w measured to the outside and subtract d or method to measure ρ, e.g. mass (balance) and volume (measuring cylinder)	
	D7 repeat measurement of x (for the same A) and average	
	D8 repeat measurements of either d or w made in different places/directions and average	
	D9 use of $A=\pi d^{2} / 4$ to determine A of wire	
	D10 use of set square to check that clamped ruler is vertical to bench or use of set square/pin as a fiducial mark to read positions (on the ruler)	

Question	Answer	Marks
2(c)(ii)	Line of best fit drawn. Points must be balanced. Do not accept line from top to bottom point. Line must pass between $(55,0.75)$ and $(56,0.75)$ and between $(77,1.40)$ and $(78,1.40)$.	1
	Worst acceptable line drawn (steepest or shallowest possible line that passes through all the error bars). All error bars must be plotted.	1
2(c)(iii)	Gradient determined with clear substitution of data points into $\Delta y / \Delta x$. Distance between data points must be at least half the length of the drawn line.	1
	Gradient of worst acceptable line determined. uncertainty $=$ (gradient of line of best fit - gradient of worst acceptable line) or uncertainty $=1 / 2($ steepest worst line gradient - shallowest worst line gradient)	1
2(c)(iv)	y-intercept determined from substitution into $y=m x+c$.	1
	y-intercept determined using gradient from worst acceptable line. uncertainty $=y$-intercept of line of best fit $-y$-intercept of worst acceptable line or uncertainty $=1 / 2$ (steepest worst line y-intercept - shallowest worst line y-intercept) No ECF from false origin method.	1

Question	Answer	Marks
2(d)(i)	f determined using gradient with correct substitution shown. $f=\frac{1}{\text { gradient }}=\frac{1}{(\mathbf{c})(\text { iii) }}$	1
	f determined using gradient and given to two or three significant figures and correct SI unit shown with correct power of ten e.g. 33 cm or 0.33 m or 33.1 cm or 0.331 m	1
	Absolute uncertainty in f determined. absolute uncertainty in $f=\frac{\Delta \text { gradient }}{\text { gradient }} \times f$	1
2(d)(ii)	t determined using y-intercept and given to two or three significant figures. Correct substitution of numbers required. $t=2 f \times(y \text {-intercept }+1)$ or $t=\frac{2 \times(y \text {-intercept }+1)}{\text { gradient }}$	1

